
Math 771: Commutative Algebra

Jeffrey Ayers

Fall 2020

About This Course

This course was taken in the Fall of 2020 at UNC Chapel Hill taught by Professor Justin
Sawon. We used Atiyah and Macdonald’s text on Commutative Algebra. These notes were
copied from the ones in my notebook, but heavily modified, and any mistakes are mine and not
the lecturers.
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1 Rings and Modules

1.1 Rings

Throughout this course, as the name would suggest, a “ring” means commutative with 1. For ring
homomorphisms f : A→ B, we want f(1A) = 1B .

Recall we have the notion of an ideal, which is a special kind of subgroup of the additive group
of the ring that absorbs elements: for each r ∈ R, x ∈ I the product rx ∈ I. We have a proposition
which we omit the proof of.

Proposition. Every proper ideal is contained in a maximal ideal

Corollary. Every nonunit of a ring A is contained in a maximal ideal

We now get to the first major definition of this course:

Definition. A ring with exactly one maximal ideal m is called a local ring, and A/m us called the
residue field of A.

Example. A field is a local ring with maximal ideal 0

Proposition. 1. Let A be a local ring, then every element of A−m is a unit

2. Coversely, if A is a ring with an ideal m 6= A such that every element of A−m is a unit, then
A is a local ring with maximal ideal m

3. If A is a ring with maximal ideal m, such that every element 1 + x for x ∈ m is a unit, then A
is a local ring.

Proof. 1. Let y ∈ A − m and consider (y) ⊂ A. As y /∈ m, (y) /∈ m and as such we must have
(y) = A, so y is a unit.

2. If a ( A is an ideal, then a consists only of nonunits, thus a ∩ (A−m) = ∅, which means that
a ⊂ m so m is the only maximal ideal.

3. Let x ∈ A−m, because m is maximal the ideal M + (x) = A, so there exists y ∈ A, z ∈ m such
that z + xy = 1 so xy = 1− z is a unit, hence x is a unit. By part ii A is a local ring.

Proposition. The set R of all nilpotent elements in a ring A is an ideal, and A/R has no nonzero
nilpotent elements. We call R the nilradical.

Proposition. The nilradical is the intersection of all the prime ideals in A

Example. Z/8Z, the nilradical, we claim, is {0, 2, 4, 6}

We know that 1, 3, 5, 7 are all units, so the ideal generated by 2 is prime, and the only prime
ideal, which is the nilradical

Definition. The Jacobson radical J is the intersection of all maximal ideals (Fun fact: Jacobson
was a mathematician at UNC!)

A somewhat obvious fact:

R =
⋂

prime ideals ⊆
⋂

maximal ideals = J

2



Proposition. x ∈ J if and only if 1− xy is a unit for all y ∈ A, our ring.

Proof. We prove the contrapositive. First assume 1− xy is not a unit. Then 1− xy is contained in
a maximal ideal m. If xy ∈ m, then 1 = (1 − xy) + (xy) ∈ m, a contradiction. Hence xy /∈ m. If
x ∈ J ⊂ m then xy ∈ m a contradiction.
Next assume that x /∈ J so there is a maximal ideal m with x /∈ m. A = (x) + m, so 1 = xy + z for
z ∈ m thus 1− xy = z ∈ m so 1− xy is not a unit.

We now look at some operations on ideals:

Definition. Given two ideals a, b we can define

� Their sum a + b

� Their product ab = {
∑
finite xy : x ∈ a, y ∈ b}

� Intersection a ∩ b

� Powers an

Example. In Z take the ideals 6Z, 10Z, then

� 6Z + 10Z = 2Z which is the gcd

� 6Z · 10Z = 60Z

� 6Z ∩ 10Z = 30Z which is the lcm

In the ring Z we have that (x)(y) = (x) ∩ (y) if and only if gcd =1

Example. Let a ⊂ Z[x] consist of polynomials with even constant term. Then 2, x ∈ a, so we then
get 4, x2 ∈ a2, hence 4 + x2 ∈ a. However 4 + x2 6= p(x)q(x) for any p(x), q(x) ∈ a

These operations on ideals satisy some expected rules: commutativity, associativity, distributive
laws. Yet one needs to be careful:

a ∩ (b + c) 6= a ∩ b + a ∩ c

in general. This does hold in Z, however. What we do always have is

a ∩ (b + c) ⊇ a ∩ b + a ∩ c

Proposition. (a + b)(a ∩ b) ⊆ ab

Definition. a and b are called comaximal ideals or coprime ideals, if a + b = A

Theorem (Chinese Remainder Theorem). Let a1, ..., an be ideals in A then the map

ϕ : A→ A/a1 × · · ·A/an

x 7→ (x+ a1, ..., x+ an)

is a ring homomorphism with kernel a1 ∩ · · · ∩ an

If ai and aj are coprime for all i, j, then ϕ is a surjective map and a1 ∩ · · · ∩ an = a1 · · · an. Thus
we have

A/(a1 · · · an) ∼= A/a1 × · · · ×A/an
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Proposition. Let p1, ..., pn be prime ideals and let a be an ideal contained in ∪ni=1pi. Then a ⊆ pi
for some i

Proposition. Let a1, ..., an be ideals an p be a prime ideal containing the intersection of the ai.
Then ai ⊆ p for some i.

Proof. Suppose ai 6⊂ p for all i. Then there is some xi ∈ a with xi /∈ p for all i. Now

x = x1 · · ·xn ∈ a1 · · · an ⊆ a1 ∩ · · · ∩ an ⊆ p

But x1, ..., xn /∈ p so their product isn’t either as p is prime. Contradiction.

Definition. If a, b are ideals in A their ideal quotient is

(a : b) = {x ∈ A : xb ⊆ a}

Example. A = Z, a = (60), b = (126) then

(a : b) = {x ∈ Z : 126x ∈ (60) =⇒ 2 · 5 = 10|x}

So the ideal quotient is (10) = (60/ gcd(60, 126))

Proposition. � a ⊆ (a : b)

� (a : b)b ⊆ a

� ((a : b) : c) = (a : bc) = (a : cb) = ((a : c) : b)

� (∩iai : b) = ∩i(ai : b)

Definition. The radical of an ideal a is

r(a) = {x ∈ A : xn ∈ a for some n > 0}

Proposition. � r(a) ⊃ a

� r(r(a)) = r(a)

� r(ab) = r(a ∩ b) = r(a) ∩ r(b)

� r(a) = A ⇐⇒ a = A

� r(a + b) = r(r(a) + r(b))

� if p is prime, then r(pn) = p

Proposition. Let a, b ∈ A be ideals such that r(a), r(b) are coprime, then the ideals a, b are coprime

Proof. r(a + b) = r(r(a) + r(b)) = r(A) = A So a + b = A

We’ll now look at something called extension and contraction of a ring.

Definition. Let f : A→ B be a ring homomorphism with b ⊂ B an ideal. We define the contraction
as bc = f−1(b), which is an ideal in A
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If b is prime, the contraction is also prime. If f is a surjection then by the isomorphism theorems
we have

f : A→ B ∼= A/ ker(f)

So we have a one-to-one correspondence:

{ideals of A containing f} ↔ {ideals of B}

{prime ideals of A containing f} ↔ {prime ideals of B}

Definition. If a ⊂ A is an ideal then

ae = Bf(a) =
{∑

yif(xi) : xi ∈ a, yi ∈ B
}

is called the extension

Example. If f is injective the situation can be very complicated. Consider

Z ↪→ Z[i]

Then for a prime p, we have (p), what is (p)e? It depends on the prime.

� (2)e = (1 + i)(1− i) = (1 + i)2

� If p ≡ 3 mod 4 then (p)e is prime.

� If p ≡ 1 mod 4 then (p)e is a product of two distinct prime ideals in the Gaussian integers.

1.2 Modules

We take a detour from Rings to talk about Modules.

Definition. An A-module M is an abelian group with an A-action such that for a ∈ A, x, y ∈M

� a(x+ y) = ax+ ay

� (a+ b)x = ax+ bx

� (ab)x = a)bx

� 1x = x

Example. We have lots of examples of modules cause they’re cool:

� Ideals

� If A is a field k, then a k-module is a vector space

� If A = Z then a Z-module is an abelian group

� A = k[x], a k-module is a vector space V over k[x] and an endomorphism T : V → V which is
the action of x.

Definition. f : M → N is an A-module homomorphism if f(x+ y) = f(x) + f(y), f(ax) = af(x).
We can make the set of module homomorphisms into an A-module: HomA(M,N)
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Definition. (N : P ) = {a ∈ A : aP ⊆ N} ⊂ A The annihilator module can be defined as
(0,M) = {a ∈ A : aM = 0}

Because every element of the annihilator acts trivially on M we can think of M as an A/Ann(M)
module.

Definition. We can define the Cartisian and Direct products of modules:⊕
i∈I

Mi = {(xi) : xi ∈M,xi = 0 for all but finitely many i}

∏
i∈I

Mi = {(xi) : xi ∈Mi}

Definition. A free module is M =
⊕
Mi with Mi

∼= A, which is to say An = A ⊕ · · · ⊕ A. It’s a
module with a basis.

M is finitely generated if it has a finite set of generators

M =
∑

Axi =
{∑

aixi : ai ∈ A
}

Proposition. M is finitely generated ⇐⇒ M is a quotient of An for some n > 0

Next comes a super-duper important lemma in Commutative Algebra:

Lemma (Nakayama’s Lemma). Let M be a finitely generated A-module, and J be the Jacobson
radical. Then

� If JM = M then M = 0

� If N ⊆M is a submodule, and M = JM +N then M = N

Remark: 2 =⇒ 1 is trivial, take N = 0. For 1 =⇒ 2 consider M/N then J(M/N) =
J(M +N)/N = M/N which implies M/N = 0 so M = 0

Proof. So prove 1, we suppose M 6= 0, let x1, ..., xn be a basis of M . Then xn ∈ M = JM which
means that

xn = a1x1 + · · ·+ anxn

for ai ∈ J Hence
(1− an)xn = a1x1 + · · · an−1xn−1

but an ∈ J so 1− yan is a unit for all y ∈ A. Hence 1− an is a unit. Which means

xn = (1− an)−1(a1x1 + · · · an−1xn−1)

Contradicting the minimality of the set of generators

Here’s an application: Let A be a local ring with maximal ideal m. Then J = m. Let M be a
finitely generated A-module. We can think of M/m as an A/m module, where A/m is the residue
field of A. In other words M/m is a vector space. If x1, ..., xn ∈M , then x1, ..., xn generate M/mM
then x1, ..., xn generate M as an A-module.
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Lemma. M finitely generated over A, a an ideal, and φ an endomorphism such that φ(M) ⊂ aM .
Then φ satisfies

φn + a1φ
n−1 + · · ·+ an = 0

Proof. Cayley-Hamilton

We now turn our attention to discussing an important concept, and a foundational aspect of a
field called Homological Algebra: Exact Sequences

Definition. A sequence of A-modules and homomorphisms

· · · Mi−1 Mi Mi+1 · · ·fi fi+1

Is exact at Mi if im(fi) = ker(fi+1). The sequence is exact if it’s exact everywhere.

Example. Consider

0 M1 M2
0 f

Is exact at M1 ⇐⇒ 0 = im 0 = ker f ⇐⇒ f is injective

Similarly we have

M2 M3 0
g 0

Is exact at M3 ⇐⇒ im g = ker 0 = M3 ⇐⇒ g is surjective

Then combining these we get that

0 M1 M2 M3 00 f g 0

Is a short exact sequence if f is injective, g is surjective and im f = ker g. Or equivalently: g induces
an isomorphism

M2/M1 'M2/im f = M2/ ker g 'M3

We can show that Hom preserves exactness of the sequence:

Proposition. We have

M1 M2 M3 0
f f

is exact if and only if for A-modules N we have that

0 Hom(M1, N) Hom(M2, N) Hom(M3, N)
g̃ f̃

Is exact. Note: g̃ is defined by α ∈ Hom(M3, N) then

g̃(α) : M2 M3 N
g α

Similarly for f̃

Likewise we get that
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0 N1 N2 N3
f g

is exact if and only if for A-modules M we have that

0 Hom(M,N1) Hom(M,N2) Hom(M,N3)
f̃ g̃

Is exact.

Definition. We say that Hom(M,−) is a covariant left exact functor, and Hom(−, N) is a con-
travariant left exact functor.
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Lemma (Snake Lemma). Suppose we have a commutative diagram with exact rows

A′ B′ C ′ 0

0 A B C

f

α

g

β γ

h j

Then there exists an exact sequence

kerα kerβ ker γ coker α coker β coker γ
f̃ g̃ δ h̃ j̃

Such that the following diagram commutes:

ker f ker g kerh

A′ B′ C ′ 0

0 A B C

coker f coker g cokerh

g

α β γ

h

δ

Sketch of proof: Define δ via diagram chase. Let x ∈ ker γ, then g surjective implies that there is
a y ∈ B′ such that g(y) = x. Consider β(y) ∈ B. Then j(β(y)) = γ(g(y)) = γ(x) = 0 as x ∈ ker γ.
So β(y) ∈ ker j = imh, so there is a z ∈ A such that β(y) = h(z). Define δ(x) = z ∈ A/imα = cokerα

TENSOR PRODUCTS OF MODULES———

2 Rings of Fractions

Definition. A mulitplicativly closed subset S ⊂ A is such that 1 ∈ S and closed under multiplication

Define an equivalence on A× S by (a, s) (b, t) if and only if (at− bs)u = 0 for some u ∈ S
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